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Abstract

Geoscientific observations in and around Iceland can not be explained by a simple
model of ridge spreading and associated transform motion. A comprehensive model
must include a mantle plume beneath the center of Iceland, i.e. a hot spot. A

has consequence for earthquake prediction. The fast processes above the Iceland
hotspot favour the discovery and monitoring of such processes.

Interplay between pull and push

The Iceland hotspot Postulated by (Vogt, 1974) and (Morgan, 1981) was seis-
mologically confirmed as an uppwelling plume by 3-D inversion of teleseismic P
wave residuals by (Tryggvason et al., 1983). At 275-375 km depth, i.e. in the
deepest layer modelled, a 100 km wide chimney-like structure of low velocity (4%)
was resolved (Figure 1). At 100-200 km depth low velocity material stretches from
the plume center especially in directions between S and W. At 0-75 km, low velocity

only and assuming a viscosity of 1019 Pas, it was estimated that the upwelling rate

is 1.7 m/year in the narrow plume chimney,14 km?/year, i.e. much more production
than the 0.1 km?®/year expected sum of erupted material and dyke intrusions in a
10 km thick crust in Iceland, assuming the Nuvel-1 spreading rate of 1,94 cm/year
(DeMets et al., 1990). So excess upwelling material must flow to the side. There
is further morphological and geochemical evidence (Vogt, 1974; Magde and Smith,
1994; Appelgate and Shor, 1994) for excess material flow outward from the center
of Iceland, especially to SW. Satellite gravity data show effects of intrusive material
from the plume to a distance of 700 km to the SW from the Reykjanes Peninsula
as a V shaped anomaly narrowing in that direction (Figure 1), where the bottom
changes from an even axial-high structure to a median valley farther south, Studies
of helium isotopes (Poreda et al., 1992) indicate a center of upwelling mantle mate-
rial 30-50 km SW of the seismic plume center. The reason for this difference may be
that the plume at depth is "moving“ under cold east Iceland crust just starting to
heat it up. Additiona] evidence for upwelling plume in the mantle beneath Iceland
comes from interpretation of gravity measurements (Kaban et al., 1994; Pérarins-
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The deep stracture of Iceland

Seismic refraction /reflection results (Pélmason, 1971; Flévenz

1991; Bjarnason et al., 1993) indicate seismic velocites in
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Magnetotelluric observations (Beblo and Bjornsson, 1980; Hersir et al., 1984;
Eysteinsson and Hermance, 1985) indicate low resistivity (10-20 Ohms) at depths
between 10-20 km and even shallower in the volcanic zones, i.e. in the intermediate
layer.
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Earthquakes Stop to large extent at 5-12 km depth limit in the South Iceland
seismic zone (Stefsnsson et al., 1993), implying ductile response to slow strajn
loading below these depths. Based on heat gradient measurements and the thermal
model of (P&lmason, 1973) the depth of the earthquake ductility is at the 750°C
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Figure 2: The structure of Iceland is shown schematically down to 20 km depth. The
depth to the brittle/ductile boundary, i.e. to the 75(° C isotherm which is at 8 km at this
particular place is shown. The low resistivity inferred from MT measurements is shown.

for short period S waves down to 20 km depth, Qs=300 (Menke and Levin, 1994).
Thus the rocks in the intermediate layer respond elastically rather than ductilely
to high strainrates as are in high frequency elastic waves. It is assumed that the
material in the intermediate layer is olivine rich peridotite. To comply with the
elastic/ductile response to different strain rates and laboratory experiments with
olivines (Kirby, 1983) we conclude that the temperature increase from the brit-
tle/ductile transition down to 20-30 km is at most 200°C. Following structure of the
intermediate layer can explain the above observations: A crystal matrix of olivine
rich peridotite close to dunite. Water components, carbondioxide are expected to
exist as intergranular fluids at temperatures exceeding 750°C in these depth ranges.
The bottom of the intermediate, i.e. the seismic refractor at 20-24 km depth in SW
Iceland, is probably due to pressure/temperature controlled change in rheological
properties. The fluids in the intermediate layer are extracted from the mantle below
the refractor. They lower the resistivity and the heat gradient. They carry heat
energy and pressure from depth, to be trapped by the brittle crust.

The intermediate layer is the locus of large aseismic motion and flow avalances
much faster than the average velocity of the plate motion. This aseismic motion is
linked to episodic deformation in the brittle crust above and with intrusions and
other results of gravitational differentiation below. Here may be the source of strain
waves, which may also have their origin in pulsations deeper in the mantle plume.
A very interesting aspect is viscosity lowering below the seismic zones and the rift
zones related to the fast relative plate motions there. Velocity of migration of seis-
mic activity in the South Iceland seismic zone (SISZ) seems to be of the order of
5-10 km/day. This would indicate effective viscosity below the brittle crust of the
order of 10'7 Pas, much lower than inferred for Iceland as a whole from glacial
rebound, which is 10*° Pas. From tilt measurements in a lake in the eastern rift
zone effective viscosity has been found an order of a magnitude lower than the usual

value (Sigmundsson et al., 1995).
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